We use cookies to improve the experience of our website.

I agree We use first-party and third-party cookies to improve the user experience on our website. You can disable the use of cookies by changing your browser settings (learn more). By continuing to browse the website without changing browser settings, you consent to our use of cookies stored on this device as described in our cookie policy.

DU Logo NU Logo

Quantum Optics in Atomic Vapours

Four-wave mixing (4WM) in the hyperfine Paschen-Back (HPB) regime

In the absence of a magnetic field, multiple-path interference results in a 4WM signal that is complex and difficult to model. In the presence of a high magnetic field (0.6 T), entry into the HPB regime removes the interference and results in a "clean" 4WM signal which is readily modelled with 4-level Optical Bloch equations


Heralded single photons

Through a four-wave mixing (4WM) process in rubidium-87, we can generate heralded bichromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats (see image below), a novel interference effect that results from the relative motion of atoms in the CSE.